Production quality of /r/ and /l/ liquids among Cantonese and Mandarin ESL learners.

Renamed

Production quality of /r/ and /l/ liquids among Beijing and Non-Beijing Mandarin ESL learners.

Donald J. Derrick and Bryan Gick
Linguistics, University of British Columbia
dderrick@interchange.ubc.ca
gick@interchange.ubc.ca

UBC Linguistics: Interdisciplinary Speech Research Lab - Vancouver, BC, May 2005
Hypothesis

• If a language learner's L1 has a sound that is phonetically similar to only one of two contrasting sounds in an L2, that learner will be better at producing the L2 contrast.
Introduction

• All Mandarin dialects have a prevocalic liquid, a dental-alveolar lateral approximant. (Shareef, 2001)

• Beijing Mandarin (BM) has a post-vocalic variant that is phonetically similar to English /r/ sound. (Honorof, PC).

• Like English /r/, BM /r/ has two movements, tongue anterior raising and tongue root backing. (Gick et. al., 2003).
Predictions

• English L2 Speakers of L1 BM will produce not only more accurate post-vocalic /r/ sounds, but also:
 – More accurate pre-vocalic /r/.
 – More accurate /l/ sounds.
than L1 Other Mandarin (OM) speakers.
Experiment

• An experiment was conducted to determine the production quality of English /r/ and /l/ sounds in pre and post vocalic environments.
Method - Source Subjects

- 4 source subjects:

<table>
<thead>
<tr>
<th></th>
<th>Experienced</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Age: 37, Y: 7</td>
<td>Age: 35, Y: <4</td>
</tr>
<tr>
<td>OM</td>
<td>Age: 43, Y: 12</td>
<td>Age: 25, Y: <2</td>
</tr>
</tbody>
</table>

- Subjects were selected from a wider Ultrasound study with 6 Beijing dialect speakers and 13 other dialect speakers.
Methods - Source Stimuli

• Minimal pairs consisted of:
 – glass/grass - complex onset
 – lead/read - onset
 – collect/correct - intervocalic
 – deal/dear - coda
 – cold/chord - complex coda

• Stimuli were pronounced in the frame:
 “I say ______ again.”
Methods - Source Stimuli

- Participants were recorded with an Alkoa Prosound SSD 5000 and a Shure SM 58 microphone on MINI DV tapes.
- Seated Participants’ heads were steadied with a head rest and head bar.
- Stimuli were presented 10X each in pseudo-random order with baseline stimuli interlaced for 210 utterances.
- 10 minutes recording time.
Methods - Perception

- Stimuli from the 4 source participants were organized in 5 token sets from 5 minimal pairs each.
- Total 50 tokens each = 200 tokens.
- Stimuli placed in pseudo-random order on a soundtrack.
- 8 blocks of 25 = 200 tokens.
- Stimuli were presented to 13 monolingual native English speakers.
- 10 minutes listening time.
Methods - Analysis

• The perception records were compiled and statistically analysed to indicate:
 – Perception differences of Beijing and Other Mandarin ESL speakers.
 – Perception differences of /r/ and /l/ sounds.
 – Perception differences in various syllabic contexts.
Results - /r/ Perception Variance

Postvocalic /r/

Prevocalic /r/

/r/ by skill

Red = incorrect, Green = correct

Difference in /r/ perception by coda is significant ($\chi^2 52.2$, $P < 0.0001$, $R^2 11.9\%$).

The Difference in /r/ perception of speakers is significant ($\chi^2 23.4$, $P < 0.0001$, $R^2 10.2\%$).

The Difference in /r/ perception of speakers is significant ($\chi^2 136$, $P < 0.0001$, $R^2 13.9\%$).
Results - /l/ Perception Variance

Postvocalic /l/

The Difference in /l/ perception of speakers is significant (χ^2 204, $P < 0.0001$, R^2 34.3%)

Prevocalic /l/

The Difference in /l/ perception of speakers is significant (χ^2 115, $P < 0.0001$, R^2 32.3%)

/l/ by skill

The Difference in /l/ perception of speakers is significant (χ^2 309, $P < 0.0001$, R^2 25.3%)

Red = incorrect, Green = correct
Results - Variance by Experience

- Experienced OM speaker was easier to understand, $\chi^2 10.2, P = 0.001, R^2 1.76\%$.

- New BM speaker was easier to understand, $\chi^2 226, P < 0.0001, R^2 15.6\%$.

- Between speaker variance significant ($\chi^2 29.816, P = 0.003$, and $R^2 1.3\%$).
Discussion

• Results suggest with enough experience, speakers of both dialects acquire the r/l distinction such that native English speakers almost always understand them.

• Beginning BM English speakers produce both /r/ and /l/ distinction more accurately than OM speakers.
Discussion

• All speakers produce onsets more accurately than codas, new BM speakers produce r/l distinction more accurately in all contexts.
• Results vary for experienced speakers and bear further research.
• These results imply an interactive multidimensional matrix of phonetic sounds - future research will attempt to computationally model these relationships.
Conclusion

• The preliminary results suggest that the existence of Beijing’s affixal /r/ significantly improves the ability of new ESL speakers to make the r/l distinction, including /l/ production and prevocalic production.
• These results support the hypothesis that even 1 sound in an L1 help new speakers pronounce both of 2 minimal pairs in an L2.
References

George Mason University ClassWeb Cantonese IPA
George Mason University ClassWeb Mandarin IPA

Honorof, D. and Mark T., “Articulatory properties of Northern Mandarin /t/” In Progress

Acknowledgements

The author wishes to thank Shaffiq Rahemtulla and Ian Wilson for help with using and understanding the lab equipment, particularly the Ultrasound machine. Thanks to Guy Carden for helping set up the preliminary perception study described in this poster, Eric Rosen and his students for generous use of class time, and Doug Honorof for help with the literature research and background information.

Thanks also to Ruth Guo and her family for providing the Chinese data for identifying Mandarin dialects, and Yuan Fei for contacting so many of my participants and thereby making this research possible.

Special thanks to the Vancouver Chinese community for providing so much support, time, participation, and information.

This research was supported by an NSERC Discovery grant to Bryan Gick.