EECE 566

Information and Coding Theory

Prerequisite: A third-year undergraduate course in Probability Theory and some familiarity with digital communications. 

3 credits

Course Outline

1. Introduction; channel models; source and channel coding 

2. Preliminaries and review: coding gain, soft input soft output (SISO) decoding. 

3. Information theory; measure of information; properties of the entropy function. 

4. Source coding; variable and fixed-length source coding theorems; Huffman and L-Z coding. 

5. Channel capacity theorem. 

6. Block codes; error-detecting and error-correcting capability. 

7. Linear block codes; generator and parity-check matrices; syndrome decoding. 

8. Cyclic codes; generator and parity-check polynomials and matrices; encoding/decoding. 

9. Convolutional codes; maximum likelihood decoding. 

10. Network information theory. 

11. Physical-layer security, secrecy capacity. 

12. Rate distortion theory (as time permits). 

13. Introduction to near-capacity codes: low density parity check (LDPC) and polar codes (as time permits). 

14. Term project presentations. 

 Textbooks (recommended)

  • T.M. Cover and J.A. Thomas, Elements of Information Theory, second edition, Wiley, 2006. 
  • S. Lin and D.J. Costello, Error Control Coding, second edition, Pearson/Prentice-Hall, 2004. 

Other books

  • D.J.C. Mackay, Information Theory, Inference and Learning Algorithms, Cambridge, 2014. 
  • J.G. Proakis and M. Salehi, Digital Communications, 5th Edition, McGraw-Hill, 2008. 
  • S.B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall, 1995. 
  • R. Gallager, Information Theory and Reliable Communication, J. Wiley, 1968.